Search results for " CRYSTALS"

showing 10 items of 237 documents

Bandgap behavior and singularity of the domain-induced light scattering through the pressure-induced ferroelectric transition in relaxor ferroelectri…

2018

[EN] In this letter, we have investigated the electronic structure of A(x)Ba(1-x)Nb(2)O(6) relaxor ferroelectrics on the basis of optical absorption spectroscopy in unpoled single crystals with A = Sr and Ca under high pressure. The direct character of the fundamental transition could be established by fitting Urbach's rule to the photon energy dependence of the absorption edge yielding bandgaps of 3.44(1) eV and 3.57(1) eV for A = Sr and Ca, respectively. The light scattering by ferroelectric domains in the pre-edge spectral range has been studied as a function of composition and pressure. After confirming with x-ray diffraction the occurrence of the previously observed ferroelectric to pa…

010302 applied physicsDiffractionPhase transitionMaterials sciencePhysics and Astronomy (miscellaneous)Absorption spectroscopyCondensed matter physics02 engineering and technologyPhoton energy021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityLight scatteringCRYSTALSTEMPERATURE-DEPENDENCEAbsorption edgeCALCIUM BARIUM NIOBATEFISICA APLICADA0103 physical sciencesDirect and indirect band gaps0210 nano-technologyCALCIUM BARIUM NIOBATE TEMPERATURE-DEPENDENCE CRYSTALS
researchProduct

Depth profiles of damage creation and hardening in MgO irradiated with GeV heavy ions

2019

This work has been performed within the framework of the EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion applications”. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

010302 applied physicsNuclear and High Energy PhysicsPhotoluminescenceMaterials scienceDislocations02 engineering and technologyNanoindentation021001 nanoscience & nanotechnologySwift heavy ions01 natural sciencesMgO crystalsNanoindentationIonCondensed Matter::Materials ScienceIndentation0103 physical sciencesHardening (metallurgy):NATURAL SCIENCES:Physics [Research Subject Categories]IrradiationComposite materialDislocation0210 nano-technologySpectroscopyInstrumentationPhotoluminescenceNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Persistence of orographic mixed‐phase clouds

2016

Mixed-phase clouds (MPCs) consist of ice crystals and supercooled water droplets at temperatures between 0 and approximately −38°C. They are thermodynamically unstable because the saturation vapor pressure over ice is lower than that over supercooled liquid water. Nevertheless, long-lived MPCs are ubiquitous in the Arctic. Here we show that persistent MPCs are also frequently found in orographic terrain, especially in the Swiss Alps, when the updraft velocities are high enough to exceed saturation with respect to liquid water allowing simultaneous growth of supercooled liquid droplets and ice crystals. Their existence is characterized by holographic measurements of cloud particles obtained …

010504 meteorology & atmospheric sciencesIce crystalsMeteorologyVapor pressure010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesGeophysicsGeneral Earth and Planetary SciencesEnvironmental scienceClimate modelMixed phasePersistence (discontinuity)SupercoolingSaturation (chemistry)0105 earth and related environmental sciencesOrographic liftGeophysical Research Letters
researchProduct

An Estimate of Global, Regional and Seasonal Cirrus Cloud Radiative Effects Contributed by Homogeneous Ice Nucleation

2020

There are two fundamental mechanisms through which cirrus clouds form; homo- and heterogeneous ice nucleation (henceforth hom and het). The relative contribution of each mechanism to ice crystal production often determines the microphysical and radiative properties of a cirrus cloud. This study attempts to estimate the radiative contribution of hom relative to het by constraining the cloud microphysics in a climate model to conform with satellite retrievals of cirrus cloud effective diameter De, where the sampled cirrus cloud base had a temperature T Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite retrievals for cirrus clouds are compared against an updat…

010504 meteorology & atmospheric sciencesMicrophysicsIce crystalsHomogeneousIce nucleusRadiative transferEnvironmental scienceClimate modelCirrusSatelliteAtmospheric sciences01 natural sciences0105 earth and related environmental sciences
researchProduct

Ray optics for absorbing particles with application to ice crystals at near-infrared wavelengths

2018

Abstract Light scattering by particles large compared to the wavelength of incident light is traditionally solved using ray optics which considers absorption inside the particle approximately, along the ray paths. To study the effects rising from this simplification, we have updated the ray-optics code SIRIS to take into account the propagation of light as inhomogeneous plane waves inside an absorbing particle. We investigate the impact of this correction on traditional ray-optics computations in the example case of light scattering by ice crystals through the extended near-infrared (NIR) wavelength regime. In this spectral range, ice changes from nearly transparent to opaque, and therefore…

010504 meteorology & atmospheric sciencesOpacityspektroskopiaIce crystalsPhysics::OpticsRay optics01 natural sciencesPOLARIZED-LIGHT SCATTERING114 Physical sciencesLight scattering010309 opticsScatteringMEDIAOptics0103 physical sciencesABSORPTIONInhomogeneous wavesCIRRUSray opticsSpectroscopy0105 earth and related environmental sciencesPhysicsta113absorbing mediaRadiationta115Geometrical opticsIce crystalsta114Scatteringbusiness.industryscatteringCLOUDSkiteetRayAtomic and Molecular Physics and OpticsoptiikkaSOLAR-RADIATIONWavelengthMAXWELLS EQUATIONSAbsorbing mediainhomogeneous wavesLight scattering by particlesPHASE MATRIXGEOMETRIC-OPTICSbusinessice crystalsAPPROXIMATION
researchProduct

Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53)

2018

A comprehensive ice nucleation parameterization has been implemented in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations (ICNCs). The parameterization of Barahona and Nenes (2009, hereafter BN09) allows for the treatment of ice nucleation taking into account the competition for water vapour between homogeneous and heterogeneous nucleation in cirrus clouds. Furthermore, the influence of chemically heterogeneous, polydisperse aerosols is considered by applying one of the multiple ice nucleating particle parameterizations which are included in BN09 to compute the heterogeneously formed ice crystals. BN09 has been modified in order to co…

010504 meteorology & atmospheric sciencesglobal climate modelNucleationMineral dustnucleation parameterizations010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesempirical parameterizationTroposphereinsoluble particlesddc:5500105 earth and related environmental sciencesmineral dustIce crystalssubmodel system messylcsh:QE1-996.5Northern Hemisphereatmospheric aerosollcsh:Geology13. Climate actionupper troposphereIce nucleusEnvironmental scienceCirrustransport sectorsWater vapordroplet number concentration
researchProduct

Superfluorinated ionic liquid crystals based on supramolecular, halogen-bonded anions

2016

Unconventional ionic liquid crystals in which the liquid crystallinity is enabled by halogen-bonded supramolecular anions [CnF2 n+1-I⋯I⋯I-CnF2 n+1]- are reported. The material system is unique in many ways, demonstrating for the first time 1) ionic, halogen-bonded liquid crystals, and 2) imidazolium-based ionic liquid crystals in which the occurrence of liquid crystallinity is not driven by the alkyl chains of the cation. Out of the ordinary: The high directionality of halogen bonds and the fluorophobic effect were exploited in the design and synthesis of a new family of unconventional superfluorinated ionic liquid crystals. The liquid crystallinity of the system is driven by halogen-bonded…

116 Chemical sciencesInorganic chemistry1600Supramolecular chemistryIonic bonding010402 general chemistry01 natural sciencesCatalysissupramolecular chemistryCrystallinitychemistry.chemical_compoundLiquid crystal1503ta116Alkylchemistry.chemical_classificationHalogen bondionic liquid crystal010405 organic chemistryChemistryCommunicationChemistry (all)Self-assemblyGeneral MedicineGeneral Chemistryself-assemblyFluorophobic effect; Halogen bonding; Ionic liquid crystals; Self-assembly; Supramolecular chemistry; Chemistry (all); CatalysisCommunicationsfluorophobic effect0104 chemical sciencesCrystallographyhalogen bondingIonic liquidIonic liquid crystalsSettore CHIM/07 - Fondamenti Chimici Delle TecnologieFluorophobic effectSelf-assemblyHalogen bondingionic liquid crystalsSupramolecular chemistry
researchProduct

Ionic liquid crystals based on viologen dimers: tuning the mesomorphism by varying the conformational freedom of the ionic layer

2016

ABSTRACTWe investigated the liquid crystal behaviour of newly synthesised bistriflimide salts of symmetric viologen dimers. A smectic A phase was observed for intermediate spacer lengths and for relatively long lateral alkyl chains. The systems were characterised by thermal analysis, polarised optical microscopy, X-ray scattering and solid-state NMR. An intermediate ordered smectic phase was also exhibited by the compounds (except for systems with very short lateral chains) consisting of molten layers of alkyl chains and partially ordered ionic layers. These results, relating to the mesomorphic behaviour of viologen salts, are qualitatively compared to those of the more common imidazolium s…

4-4?-bipyridinium4-4ʹ-bipyridiniumMaterials scienceIonic liquid crystals; viologens; 4-4ʹ-bipyridiniumIonic bonding02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundLiquid crystalPhase (matter)medicineOrganic chemistryGeneral Materials ScienceBistriflimideviologensAlkylSettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationviologenChemistry (all)MesophaseViologenGeneral ChemistrySettore CHIM/06 - Chimica Organica4-4ʹ-bipyridinium; Ionic liquid crystals; viologens; Condensed Matter Physics; Materials Science (all); Chemistry (all)021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesCrystallographychemistryIonic liquidIonic liquid crystalsIonic liquid crystalMaterials Science (all)0210 nano-technologymedicine.drug
researchProduct

Synthesis, Thermal, and Optical Properties of Tris(5‐aryl‐1,3,4‐oxadiazol‐2‐yl)‐1,3,5‐triazines, New Star‐Shaped Fluorescent Discotic Liquid Crystals

2019

Abstract The synthesis of tris(aryloxadiazolyl)triazines (TOTs), C 3‐symmetrical star‐shaped mesogenes with a 1,3,5‐triazine center, 5‐phenyl‐1,3,4‐oxadiazole arms, and various peripheral alkoxy side chains is reported. Threefold Huisgen reaction on a central triazine tricarboxylic acid and suitable aryltetrazoles yields the title compounds. Selected analogues with a benzene center are included in this study and allow for an evaluation of the impact of the central unit on the physical properties. Thermal (differential scanning calorimetry, DSC; polarization optical microscopy, POM), optical (UV/Vis, fluorescence), electric (time of flight, TOF), and structural (single crystal; wide‐angle X‐…

540 Chemistry and allied sciencessolvatochromism010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundliquid crystalsDifferential scanning calorimetryLiquid crystalSide chainTriazineheterocyclesFull Paper010405 organic chemistryDiscotic liquid crystalOrganic ChemistrySolvatochromismLiquid Crystals | Hot PaperGeneral ChemistryFull PapersX-ray scattering0104 chemical sciencesCrystallographychemistry540 ChemieAlkoxy groupfluorescenceSingle crystalChemistry – A European Journal
researchProduct

Electronic structure of phthalocyanines : Theoretical investigation of the optical properties of phthalocyanine monomers, dimers, and crystals

1990

We present valence effective Hamiltonian (VEH) calculations on the optical absorptions of a series of phthalocyanine compounds: the metal‐free phthalocyanine molecule, a model system for the lithium phthalocyanine molecule, the metal‐free phthalocyanine dimer, and model systems for the lutetium diphthalocyanine and the lithium phthalocyanine crystal. For these compounds, it is found that the major factor influencing the evolution of the optical transitions is not the electronic structure of the metal but rather the geometric structure: phthalocyanine intraring geometry and, in the dimers and crystals, interring separation and staggering angle. The origin of the so‐called Soret or B absorpti…

Absorption SpectraAbsorption spectroscopyPhthalocyaninesGeneral Physics and AstronomyElectronic structurePhotochemistryCrystalchemistry.chemical_compoundHamiltonian FunctionMoleculePhysical and Theoretical ChemistryDimers:FÍSICA::Química física [UNESCO]Inorganic compoundchemistry.chemical_classificationValence (chemistry)MonomersMolecular CrystalsUNESCO::FÍSICA::Química físicaCrystallographyElectronic StructurechemistryAbsorption bandPhthalocyanineCondensed Matter::Strongly Correlated ElectronsElectronic Structure ; Molecular Crystals ; Dimers ; Monomers ; Absorption Spectra ; Hamiltonian Function ; Phthalocyanines
researchProduct